首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Adhesive bond stiffness of Staphylococcus aureus with and without proteins that bind to an adsorbed fibronectin film
Authors:Olsson Adam L J  Sharma Prashant K  Mei Henny C van der  Busscher Henk J
Institution:Department of Biomedical Engineering, W. J. Kolff Institute, University Medical Center and University of Groningen, Groningen, The Netherlands.
Abstract:Staphylococcus aureus is known to cause biomaterial-associated infections of implants and devices once it has breached the skin and mucosal barriers. Adhesion is the initial step in the development of a biomaterial-associated infection, and strategies to prevent staphylococcal adhesion and thus biomaterial-associated infections require understanding of the adhesive bond. The aim of this study was to compare the adhesive bond stiffnesses of two S. aureus strains with and without fibronectin-binding proteins (FnBPs) adhering to a fibronectin-coated quartz crystal microbalance (QCM) sensor surface on the basis of a coupled- resonance model. Both fibronectin adsorption and staphylococcal adhesion were accompanied by negative frequency shifts, regardless of the absence or presence of FnBPs on the staphylococcal cell surfaces. This is the opposite of the positive frequency shifts often observed for other bacterial strains adhering to bare sensor surfaces. Most likely, adhering staphylococci sink into and deform the adsorbed protein layer, creating stiff binding with the sensor surface due to an increased bacterium-substratum contact area. S. aureus 8325-4 possesses FnBPs and yields less negative frequency shifts (Δf) that are further away from the zero-crossing frequency than S. aureus DU5883. This suggests that FnBPs on S. aureus 8325-4 create a stiffer bond to the fibronectin coating than has been observed for S. aureus DU5883. Due to a limited window of observation, as defined by the available resonance frequencies in QCM, we could not determine exact stiffness values.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号