首页 | 本学科首页   官方微博 | 高级检索  
     


Spinel‐Layered Core‐Shell Cathode Materials for Li‐Ion Batteries
Authors:Yonghyun Cho  Sanghan Lee  Yongseok Lee  Taeeun Hong  Jaephil Cho
Affiliation:1. Converging Research Center for Innovative Battery Technologies and Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689‐798, South Korea;2. Busan Centre, Korea Basic Science Institute (KBSI), 1275 Jisa, Gangseo, Busan, 618‐230, South Korea
Abstract:In an attempt to overcome the problems associated with LiNiO2, the solid solution series of lithium nickel‐metal oxides, Li[Ni1–xMx]O2 (with M = Co, Mn, Al, Ti, Mg, etc.), have been investigated as favorable cathode materials for high‐energy and high‐power lithium‐ion batteries. However, along with the improvement in the electrochemical properties in Ni‐based cathode materials, the thermal stability has been a great concern, and thus violent reaction of the cathode with the electrolyte needs to be avoided. Here, we report a heterostructured Li[Ni0.54Co0.12Mn0.34]O2 cathode material which possesses both high energy and safety. The core of the particle is Li[Ni0.54Co0.12Mn0.34]O2 with a layered phase (R3‐m) and the shell, with a thickness of < 0.5 μm, is a highly stable Li1+x[CoNixMn2–x]2O4 spinel phase (Fd‐3m). The material demonstrates reversible capacity of 200 mAhg‐1 and retains 95% capacity retention under the most severe test condition of 60 °C. In addition, the amount of oxygen evolution from the lattice in the cathode with two heterostructures is reduced by 70%, compared to the reference sample. All these results suggest that the bulk Li[Ni0.54Co0.12Mn0.34]O2 consisting of two heterostructures satisfy the requirements for hybrid electric vehicles, power tools, and mobile electronics.
Keywords:spinel  layered materials  cathodes  core‐shell materials  Li‐ion batteries
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号