首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Identification of glucose kinase‐dependent and ‐independent pathways for carbon control of primary metabolism,development and antibiotic production in Streptomyces coelicolor by quantitative proteomics
Authors:Jacob Gubbens  Marleen Janus  Bogdan I Florea  Herman S Overkleeft  Gilles P van Wezel
Institution:Leiden Institute of Chemistry, Leiden University, , 2300RA Leiden, The Netherlands
Abstract:Members of the soil‐dwelling prokaryotic genus Streptomyces are indispensable for the recycling of complex polysaccharides, and produce a wide range of natural products. Nutrient availability is a major determinant for the switch to development and antibiotic production in streptomycetes. Carbon catabolite repression (CCR), a main signalling pathway underlying this phenomenon, was so far considered fully dependent on the glycolytic enzyme glucose kinase (Glk). Here we provide evidence of a novel Glk‐independent pathway in Streptomyces coelicolor, using advanced proteomics that allowed the comparison of the expression of some 2000 proteins, including virtually all enzymes for central metabolism. While CCR and inducer exclusion of enzymes for primary and secondary metabolism and precursor supply for natural products is mostly mediated via Glk, enzymes for the urea cycle, as well as for biosynthesis of the γ‐butyrolactone Scb1 and the responsive cryptic polyketide Cpk are subject to Glk‐independent CCR. Deletion of glkA led to strong downregulation of biosynthetic proteins for prodigionins and calcium‐dependent antibiotic (CDA) in mannitol‐grown cultures. Repression of bldB, bldN, and its target bldM may explain the poor development of S. coelicolor on solid‐grown cultures containing glucose. A new model for carbon catabolite repression in streptomycetes is presented.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号