Comparative metabolic profiling between desiccation‐sensitive and desiccation‐tolerant species of Selaginella reveals insights into the resurrection trait |
| |
Authors: | Abou Yobi Bernard W. M. Wone Wenxin Xu Danny C. Alexander Lining Guo John A. Ryals Melvin J. Oliver John C. Cushman |
| |
Affiliation: | 1. Department of Biochemistry & Molecular Biology, University of Nevada, Reno, NV 89557‐0330, USA;2. Department of Biological Sciences, University of Nevada, Reno, NV 89557‐0314, USA;3. Metabolon Inc., 800 Capitola Drive, Suite 1, Durham, NC 27713, USA;4. U.S. Department of Agriculture‐Agricultural Research Service, Plant Genetic Research Unit, University of Missouri, Columbia, MO 65211, USA |
| |
Abstract: | Spike mosses (Selaginellaceae) represent an ancient lineage of vascular plants in which some species have evolved desiccation tolerance (DT). A sister‐group contrast to reveal the metabolic basis of DT was conducted between a desiccation‐tolerant species, Selaginella lepidophylla, and a desiccation‐sensitive species, Selaginella moellendorffii, at 100% relative water content (RWC) and 50% RWC using non‐biased, global metabolomics profiling technology, based on GC/MS and UHLC/MS/MS2 platforms. A total of 301 metabolites, including 170 named (56.5%) and 131 (43.5%) unnamed compounds, were characterized across both species. S. lepidophylla retained significantly higher abundances of sucrose, mono‐ and polysaccharides, and sugar alcohols than did S. moellendorffii. Aromatic amino acids, the well‐known osmoprotectant betaine and flavonoids were also more abundant in S. lepidophylla. Notably, levels of γ‐glutamyl amino acid, linked with glutathione metabolism in the detoxification of reactive oxygen species, and with possible nitrogen remobilization following rehydration, were markedly higher in S. lepidophylla. Markers for lipoxygenase activity were also greater in S. lepidophylla, especially at 50% RWC. S. moellendorffii contained more than twice the number of unnamed compounds, with only a slightly greater abundance than in S. lepidophylla. In contrast, S. lepidophylla contained 14 unnamed compounds of fivefold or greater abundance than in S. moellendorffii, suggesting that these compounds might play critical roles in DT. Overall, S. lepidophylla appears poised to tolerate desiccation in a constitutive manner using a wide range of metabolites with some inducible components, whereas S. moellendorffii mounts only limited metabolic responses to dehydration stress. |
| |
Keywords: | resurrection plants desiccation tolerance
Selaginella lepidophylla
Selaginella moellendorffii
metabolome |
|
|