首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Fast fluorescence laser tracking microrheometry. I: instrument development
Authors:Jonas Maxine  Huang Hayden  Kamm Roger D  So Peter T C
Institution:* Departments of Biological Engineering and
Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
Brigham and Women's Hospital, Boston, Massachusetts
Abstract:To gain insight into cellular mechanotransduction pathways, we have developed a fluorescence laser tracking microrheometer (FLTM) to measure material rheological features on micrometer length scales using fluorescent microspheres as tracer particles. The statistical analysis of the Brownian motion of a particle quantifies the viscoelastic properties of the probe's environment, parameterized by the frequency-dependent complex shear modulus G*(ω). This FLTM has nanometer spatial resolution over a frequency range extending from 1 Hz to 50 kHz. In this work, we first describe the consecutive stages of instrument design, development, and optimization. We subsequently demonstrate the accuracy of the FLTM by reproducing satisfactorily the known rheological characteristics of purely viscous glycerol solutions and cross-linked polyacrylamide polymer networks. An upcoming companion article will illustrate the use of FLTM in studying the solid-like versus liquid-like rheological properties of fibroblast cytoskeletons in living biological samples.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号