首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Optical and acoustical dynamics of microbubble contrast agents inside neutrophils
Authors:Dayton P A  Chomas J E  Lum A F  Allen J S  Lindner J R  Simon S I  Ferrara K W
Institution:Biomedical Engineering Division, University of California, Davis 95616, USA.
Abstract:Acoustically active microbubbles are used for contrast-enhanced ultrasound assessment of organ perfusion. In regions of inflammation, contrast agents are captured and phagocytosed by activated neutrophils adherent to the venular wall. Using direct optical observation with a high-speed camera and acoustical interrogation of individual bubbles and cells, we assessed the physical and acoustical responses of both phagocytosed and free microbubbles. Optical analysis of bubble radial oscillations during insonation demonstrated that phagocytosed microbubbles experience viscous damping within the cytoplasm and yet remain acoustically active and capable of large volumetric oscillations during an acoustic pulse. Fitting a modified version of the Rayleigh-Plesset equation that describes mechanical properties of thin shells to optical radius-time data of oscillating bubbles provided estimates of the apparent viscosity of the intracellular medium. Phagocytosed microbubbles experienced a viscous damping approximately sevenfold greater than free microbubbles. Acoustical comparison between free and phagocytosed microbubbles indicated that phagocytosed microbubbles produce an echo with a higher mean frequency than free microbubbles in response to a rarefaction-first single-cycle pulse. Moreover, this frequency increase is predicted using the modified Rayleigh-Plesset equation. We conclude that contrast-enhanced ultrasound can detect distinct acoustic signals from microbubbles inside of neutrophils and may provide a unique tool to identify activated neutrophils at sites of inflammation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号