首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Modeling Ca2+ dynamics of mouse cardiac cells points to a critical role of SERCA's affinity for Ca2+
Authors:Raeymaekers Luc  Vandecaetsbeek Ilse  Wuytack Frank  Vangheluwe Peter
Institution:Laboratory of Cellular Transport Systems, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Campus Gasthuisberg, Leuven, Belgium
Abstract:The SERCA2a isoform of the sarco/endoplasmic reticulum Ca(2+) pumps is specifically expressed in the heart, whereas SERCA2b is the ubiquitously expressed variant. It has been shown previously that replacement of SERCA2a by SERCA2b in mice (SERCA2(b/b) mice) results in only a moderate functional impairment, whereas SERCA activity is decreased by a 40% lower SERCA protein expression and by increased inhibition by phospholamban. To find out whether the documented kinetic differences in SERCA2b relative to SERCA2a (i.e., a twofold higher apparent Ca(2+) affinity, but twofold lower maximal turnover rate) can explain these compensatory changes, we simulated Ca(2+) dynamics in mouse ventricular myocytes. The model shows that the relative Ca(2+) transport capacity of SERCA2a and SERCA2b depends on the SERCA concentration. The simulations point to a dominant effect of SERCA2b's higher Ca(2+) affinity over its lower maximal turnover rate. The results suggest that increased systolic and decreased diastolic Ca(2+) levels in unstimulated conditions could contribute to the downregulation of SERCA in SERCA2(b/b) mice. In stress conditions, Ca(2+) handling is less efficient by SERCA2b than by SERCA2a, which might contribute to the observed hypertrophy in SERCA2(b/b) mice. Altogether, SERCA2a might be a better compromise between performance in basal conditions and performance during β-adrenergic stress.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号