首页 | 本学科首页   官方微博 | 高级检索  
     


Inbreeding in Japanese quail estimated by pedigree and microsatellite analyses
Authors:Kim Shin Hun  Cheng Kimberly Ming-Tak  Ritland Carol  Ritland Kermit  Silversides Frederick G
Affiliation:Department of Animal Science, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4.
Abstract:Accurately estimating inbreeding is important because inbreeding reduces fitness and production traits in populations. We analyzed information from pedigrees and from microsatellite markers to estimate inbreeding in a line of Japanese quail derived from a randombred line (QO) and maintained for 17 generations by pedigreed matings of brothers to groups of sisters. Pedigree data were used to calculate the inbreeding coefficient (F(IT)), which is the level of inbreeding based on a reference ancestor. Data from analysis of 14 microsatellite markers in the inbred and QO lines were used to calculate the population differentiation (F(ST)) of the lines caused by inbreeding. The F(IT) was then calculated as F(IT) = F(IS) + (1 - F(IS)) x F(ST), where F(IS) is the level of inbreeding in the inbred line. Observed heterozygosity from analysis of the microsatellite markers of the QO and inbred lines was 0.43 and 0.21, respectively, and the number of alleles was 3.29 and 1.93, demonstrating a reduction of genetic diversity in the inbred line. The F(IT) of the inbred line calculated from the pedigree and microsatellite marker analyses was 0.69 +/- 0.07 and 0.57 +/- 0.33, respectively. These data suggest that pedigree analysis was more accurate than microsatellite marker analyses for estimating inbreeding in this line of Japanese quail.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号