首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A density functional theory study of the decomposition mechanism of nitroglycerin
Authors:Email author" target="_blank">Liguan?PeiEmail author  Kehai?Dong  Yanhui?Tang  Bo?Zhang  Chang?Yu  Wenzuo?Li
Institution:1.Department of Aircraft Engineering,Naval Aeronautical Engineering University,Yantai City,China;2.College of Chemistry and Chemical Engineering,Yantai University,Yantai,China
Abstract:The detailed decomposition mechanism of nitroglycerin (NG) in the gas phase was studied by examining reaction pathways using density functional theory (DFT) and canonical variational transition state theory combined with a small-curvature tunneling correction (CVT/SCT). The mechanism of NG autocatalytic decomposition was investigated at the B3LYP/6-31G(d,p) level of theory. Five possible decomposition pathways involving NG were identified and the rate constants for the pathways at temperatures ranging from 200 to 1000 K were calculated using CVT/SCT. There was found to be a lower energy barrier to the β-H abstraction reaction than to the α-H abstraction reaction during the initial step in the autocatalytic decomposition of NG. The decomposition pathways for CHOCOCHONO2 (a product obtained following the abstraction of three H atoms from NG by NO2) include O–NO2 cleavage or isomer production, meaning that the autocatalytic decomposition of NG has two reaction pathways, both of which are exothermic. The rate constants for these two reaction pathways are greater than the rate constants for the three pathways corresponding to unimolecular NG decomposition. The overall process of NG decomposition can be divided into two stages based on the NO2 concentration, which affects the decomposition products and reactions. In the first stage, the reaction pathway corresponding to O–NO2 cleavage is the main pathway, but the rates of the two autocatalytic decomposition pathways increase with increasing NO2 concentration. However, when a threshold NO2 concentration is reached, the NG decomposition process enters its second stage, with the two pathways for NG autocatalytic decomposition becoming the main and secondary reaction pathways.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号