首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Steady-state current flow through gap junctions. Effects on intracellular ion concentrations and fluid movement.
Authors:P R Brink  R T Mathias  S W Jaslove  and G J Baldo
Institution:Department of Anatomy, State University of New York, Stony Brook 11794.
Abstract:Double voltage clamp studies were performed on gap junctions contained in septal membranes of the earthworm median giant axon. The gap junctions exhibited no conductance changes in response to voltages imposed across either the septal membrane or the plasma membrane. However, the trans-septal current displayed a slow (10 s) relaxation in response to transjunctional voltage steps. The experimental evidence suggests that this relaxation is a polarization of the septum due to local accumulation/depletion of permeant ions. A theoretical analysis of this observation suggests that the applied electric field causes accumulation of impermeant anions on one side of the junction and depletion on the other, which leads to a change in concentration of permeant ions to maintain macroscopic electroneutrality. The change in concentration of permeant ions generates a transjunctional equilibrium potential that opposes junctional current flow. These results indicate that currents flowing through gap junctions can have an influence on the distribution of intracellular ions. Moreover, the theoretical analysis suggests that such currents will be accompanied by significant intracellular and intercellular water flow.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号