首页 | 本学科首页   官方微博 | 高级检索  
     


The essential Ubc4/Ubc5 function in yeast is HECT E3-dependent, and RING E3-dependent pathways require only monoubiquitin transfer by Ubc4
Authors:Stoll Kate E  Brzovic Peter S  Davis Trisha N  Klevit Rachel E
Affiliation:Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.
Abstract:The ubiquitin (Ub)-conjugating enzymes Ubc4 and Ubc5 are involved in a variety of ubiquitination pathways in yeast, including Rsp5- and anaphase-promoting complex (APC)-mediated pathways. We have found the double deletion of UBC4 and UBC5 genes in yeast to be lethal. To investigate the essential pathway disrupted by the ubc4/ubc5 deletion, several point mutations were inserted in Ubc4. The Ubc4 active site mutation C86A and the E3-binding mutations A97D and F63A were both unable to rescue the lethal phenotype, indicating that an active E3/E2~Ub complex is required for the essential function of Ubc4/Ubc5. A mutation that specifically eliminates RING E3-catalyzed isopeptide formation but not HECT E3 transthiolation (N78S-Ubc4) rescued the lethal phenotype. Thus, the essential redundant function performed by Ubc4 and Ubc5 in yeast is with a HECT-type E3, likely the only essential HECT in yeast, Rsp5. Our results also suggest that Ubc1 can weakly replace Ubc4 to transfer mono-Ub with APC, but Ubc4 cannot replace Ubc1 for poly-Ub chain extension on APC substrates. Finally, the backside Ub-binding mutant S23R-Ubc4 has no observable effect in yeast. Together, our results are consistent with a model in which Ubc4 and Ubc5 are 1) the primary E2s for Rsp5 in yeast and 2) act as monoubiquitinating E2s in RING E3-catalyzed pathways, in contrast to the processive human ortholog UbcH5.
Keywords:Ubiquitin   Ubiquitin-conjugating Enzyme (Ubc)   Ubiquitin Ligase   Ubiquitination   Ubiquitylation   Yeast Genetics   APC   Rsp5   Ubc4   UbcH5
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号