首页 | 本学科首页   官方微博 | 高级检索  
     


Covalent reaction of cerulenin at the active site of acyl-CoA reductase of Photobacterium phosphoreum
Authors:L Wall  E Meighen
Affiliation:Department of Biochemistry, McGill University, Montreal, Que., Canada.
Abstract:Inhibition of bioluminescence in Photobacterium phosphoreum by cerulenin has been demonstrated to be due to a specific inactivation of the acyl-CoA reductase subunit of the fatty acid reductase complex required for synthesis of the aldehyde substrate for the luminescent reaction. In contrast, the activities of the other luminescence-related enzymes, acyl-protein synthetase, acyl-transferase, and luciferase, were unaffected by cerulenin. Myristoyl-CoA, but not NADPH, protected the acyl-CoA reductase against cerulenin inhibition. Cerulenin blocked the acylation of the reductase with myristoyl-CoA and the reaction with N-ethylmaleimide. A shift in mobility of the reductase polypeptide on sodium dodecyl sulfate - polyacrylamide gel electrophoresis occurred after reaction with cerulenin, a shift which could be blocked by reaction with N-ethylmaleimide. These results demonstrate that cerulenin blocks aldehyde synthesis by covalent reaction with the acyl-CoA reductase and indicate that the reaction may occur at a cysteine residue involved in the formation of the acyl-reductase intermediate.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号