首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Isolation and characterization of functional domains of UvrA.
Authors:G M Myles  A Sancar
Institution:Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill 27599.
Abstract:The sequence of Escherichia coli UvrA protein suggests that it may fold into two functional domains each possessing DNA binding and ATPase activities. We have taken two approaches to physically isolate polypeptides corresponding to the two putative domains. First, a 180 base pair DNA segment encoding multiple collagenase recognition sequences was inserted into UvrA's putative interdomain hinge region. This UvrA derivative was purified and digested with collagenase, and the resulting 70-kDa N-terminal and 35-kDa C-terminal fragments were purified. Both fragments possessed nonspecific DNA binding activity, but only the N-terminal domain retained its nucleotide binding capacity as evidence by measurements of ATP hydrolysis and by ATP photo-cross-linking. Together, the two fragments failed to substitute for UvrA in reconstituting (A)BC excinuclease and, therefore, were presumed to be unable to load UvrB onto damaged DNA. Second, the DNA segments encoding the two domains were fused to the beta-galactosidase gene. The UvrA N-terminal domain-beta-galactosidase fusion protein was overproduced and purified. This fusion protein had ATPase activity, thus confirming that the amino-terminal domain does possess an intrinsic ATPase activity independent of any interaction with the carboxy terminus. Our results show that UvrA has two functional domains and that the specificity for binding to damaged DNA is provided by the proper three-dimensional orientation of one zinc finger motif relative to the other and is not an intrinsic property of an individual zinc finger domain.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号