首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cyclic nucleotide regulation of teleost rod photoreceptor inner segment length
Abstract:Retinal rod photoreceptors of teleost fish elongate in the light and shorten in the dark. Rod cell elongation and shortening are both mediated by actin-dependent mechanisms that occur in the inner segment myoid and ellipsoid. The intracellular signaling pathways by which light and dark regulate the actin cytoskeleton in the inner segment are unknown. To investigate the intracellular signals that regulate teleost rod motility, we have been using mechanically isolated rod inner/outer segments (RIS-ROS) obtained from the retinas of green sunfish, Lepomis cyanellus. In culture, RIS-ROS retain the ability to elongate in response to light; myoids elongate 15-20 microns in length during 45 min of light culture. A pharmacological approach was taken to investigate the role of cyclic nucleotides, cyclic nucleotide-dependent kinases, and protein phosphatases in the regulation of RIS-ROS motility. Millimolar concentrations of cAMP and cGMP analogues were both found to inhibit light-induced myoid elongation and two cyclic nucleotide analogues, SpCAMPS and 8BrcGMP, promoted myoid shortening after RIS-ROS had elongated in response to light. The cyclic nucleotide- dependent kinase inhibitor, H8, mimicked light by promoting myoid elongation in the dark. The effects of H8 were dose dependent, with maximal elongation occurring at concentrations of approximately 100 microM. Similar to the effects of cyclic nucleotide analogues, the phosphatase inhibitor, okadaic acid (0.1-10 microM), inhibited light- induced elongation and promoted shortening. The results presented here suggest that RIS-ROS motility is regulated by protein phosphorylation: phosphorylation in the dark by cyclic nucleotide-dependent protein kinases promotes rod shortening, while dephosphorylation in the light promotes rod elongation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号