首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Gender-dependent regulation of G-protein-gated inwardly rectifying potassium current in dorsal raphe neurons in knock-out mice devoid of the 5-hydroxytryptamine transporter
Authors:Loucif Alexandre Julien Châu  Bonnavion Patricia  Macri Béatrice  Golmard Jean-Louis  Boni Claudette  Melfort Maxette  Leonard Grégoire  Lesch Klaus-Peter  Adrien Joëlle  Jacquin Thierry Didier
Institution:UMR 677, INSERM/UPMC, NeuroPsychoPharmacologie, Faculté de Médecine Pierre et Marie Curie, Site Pitié-Salpêtrière, 91 Boulevard de l'H?pital, 75634 Paris Cedex 13, France.
Abstract:Agonists at G-protein-coupled receptors in neurons of the dorsal raphe nucleus (DRN) of knock-out mice devoid of the serotonin transporter (5-HTT(-/-)) exhibit lower efficacy to inhibit cellular discharge than in wild-type counterparts. Using patch-clamp whole-cell recordings, we found that a G-protein-gated inwardly rectifying potassium (GIRK) current is involved in the inhibition of spike discharge induced by 5-HT1A agonists (5-carboxamidotryptamine (5-CT) and (+/-)-2-dipropylamino-8-hydroxy-1,2,3,4-tetrahydronaphthalene hydrobromide (8-OH-DPAT); 50 nM-30 microM) in both wild-type and 5-HTT(-/-) female and male mice. These effects were mimicked by 5'-guanylyl-imido-diphosphate (Gpp(NH)p; 400 microM) dialysis into cells with differences between genders. The 5-HTT(-/-) knock-out mutation reduced the current density induced by Gpp(NH)p in females but not in males. These data suggest that the decreased response of 5-HT1A receptors to agonists in 5-HTT(-/-) mutants reflects notably alteration in the coupling between G-proteins and GIRK channels in females but not in males. Accordingly, gender differences in central 5-HT neurotransmission appear to depend-at least in part-on sex-related variations in corresponding receptor-G protein signaling mechanisms.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号