首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors
Authors:Bhattacharya Supriyo  Hall Spencer E  Vaidehi Nagarajan
Institution:Division of Immunology, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA-91010, USA
Abstract:Activation of G-protein-coupled receptors (GPCRs) is initiated by conformational changes in the transmembrane (TM) helices and the intra- and extracellular loops induced by ligand binding. Understanding the conformational changes in GPCRs leading to activation is imperative in deciphering the role of these receptors in the pathology of diseases. Since the crystal structures of activated GPCRs are not yet available, computational methods and biophysical techniques have been used to predict the structures of GPCR active states. We have recently applied the computational method LITiCon to understand the ligand-induced conformational changes in β2-adrenergic receptor by ligands of varied efficacies. Here we report a study of the conformational changes associated with the activation of bovine rhodopsin for which the crystal structure of the inactive state is known. Starting from the inactive (dark) state, we have predicted the TM conformational changes that are induced by the isomerization of 11-cis retinal to all-trans retinal leading to the fully activated state, metarhodopsin II. The predicted active state of rhodopsin satisfies all of the 30 known experimental distance constraints. The predicted model also correlates well with the experimentally observed conformational switches in rhodopsin and other class A GPCRs, namely, the breaking of the ionic lock between R1353.50 at the intracellular end of TM3 (part of the DRY motif) and E2476.30 on TM6, and the rotamer toggle switch on W2656.48 on TM6. We observe that the toggling of the W2656.48 rotamer modulates the bend angle of TM6 around the conserved proline. The rotamer toggling is facilitated by the formation of a water wire connecting S2987.45, W2656.48 and H2115.46. As a result, the intracellular ends of TMs 5 and 6 move outward from the protein core, causing large conformational changes at the cytoplasmic interface. The predicted outward movements of TM5 and TM6 are in agreement with the recently published crystal structure of opsin, which is proposed to be close to the active-state structure. In the predicted active state, several residues in the intracellular loops, such as R69, V1393.54, T229, Q237, Q239, S240, T243 and V2506.33, become more water exposed compared to the inactive state. These residues may be involved in mediating the conformational signal from the receptor to the G protein. From mutagenesis studies, some of these residues, such as V1393.54, T229 and V2506.33, are already implicated in G-protein activation. The predicted active state also leads to the formation of new stabilizing interhelical hydrogen-bond contacts, such as those between W2656.48 and H2115.46 and E1223.37 and C1674.56. These hydrogen-bond contacts serve as potential conformational switches offering new opportunities for future experimental investigations. The calculated retinal binding energy surface shows that binding of an agonist makes the receptor dynamic and flexible and accessible to many conformations, while binding of an inverse agonist traps the receptor in the inactive state and makes the other conformations inaccessible.
Keywords:GPCR  G-protein-coupled receptors  β2AR  β2-adrenergic receptor  TM  transmembrane  Meta  metarhodopsin  EPR  electron paramagnetic resonance  ICL  intracellular loop  MD  molecular dynamics  ECL2  extracellular loop 2  GTP  guanosine 5&prime  -triphosphate
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号