首页 | 本学科首页   官方微博 | 高级检索  
     


Self-assembling Shell Proteins PduA and PduJ have Essential and Redundant Roles in Bacterial Microcompartment Assembly
Authors:Nolan W. Kennedy  Svetlana P. Ikonomova  Marilyn Slininger Lee  Henry W. Raeder  Danielle Tullman-Ercek
Affiliation:1. Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA;2. Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA;3. Department of Energy Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA 90095, USA;4. Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA;1. Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA;2. Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;3. Berkeley Synthetic Biology Institute, Berkeley, CA 94720, USA;4. DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
Abstract:Protein self-assembly is a common and essential biological phenomenon, and bacterial microcompartments present a promising model system to study this process. Bacterial microcompartments are large, protein-based organelles which natively carry out processes important for carbon fixation in cyanobacteria and the survival of enteric bacteria. These structures are increasingly popular with biological engineers due to their potential utility as nanobioreactors or drug delivery vehicles. However, the limited understanding of the assembly mechanism of these bacterial microcompartments hinders efforts to repurpose them for non-native functions. Here, we comprehensively investigate proteins involved in the assembly of the 1,2-propanediol utilization bacterial microcompartment from Salmonella enterica serovar Typhimurium LT2, one of the most widely studied microcompartment systems. We first demonstrate that two shell proteins, PduA and PduJ, have a high propensity for self-assembly upon overexpression, and we provide a novel method for self-assembly quantification. Using genomic knock-outs and knock-ins, we systematically show that these two proteins play an essential and redundant role in bacterial microcompartment assembly that cannot be compensated by other shell proteins. At least one of the two proteins PduA and PduJ must be present for the bacterial microcompartment shell to assemble. We also demonstrate that assembly-deficient variants of these proteins are unable to rescue microcompartment formation, highlighting the importance of this assembly property. Our work provides insight into the assembly mechanism of these bacterial organelles and will aid downstream engineering efforts.
Keywords:1,2-propanediol utilization MCP  gene knockout  oligomerization  rapid self-assembly assay
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号