Abstract: | High energy consumption (EC) is one of the leading and interesting issue in the cloud environment. The optimization of EC is generally related to scheduling problem. Optimum scheduling strategy is used to select the resources or tasks in such a way that system performance is not violated while minimizing EC and maximizing resource utilization (RU). This paper presents a task scheduling model for scheduling the tasks on virtual machines (VMs). The objective of the proposed model is to minimize EC, maximize RU, and minimize workflow makespan while preserving the task’s deadline and dependency constraints. An energy and resource efficient workflow scheduling algorithm (ERES) is proposed to schedule the workflow tasks to the VMs and dynamically deploy/un-deploy the VMs based on the workflow task’s requirements. An energy model is presented to compute the EC of the servers. Double threshold policy is used to perceive the server’ status i.e. overloaded/underloaded or normal. To balance the workload on the overloaded/underloaded servers, live VM migration strategy is used. To check the effectiveness of the proposed algorithm, exhaustive simulation experiments are conducted. The proposed algorithm is compared with power efficient scheduling and VM consolidation (PESVMC) algorithm on the accounts of RU, energy efficiency and task makespan. Further, the results are also verified in the real cloud environment. The results demonstrate the effectiveness of the proposed ERES algorithm. |