首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Formation and characterization of planar lipid bilayer membranes from synthetic phytanyl-chained glycolipids
Authors:Baba T  Toshima Y  Minamikawa H  Hato M  Suzuki K  Kamo N
Institution:Surface Engineering Laboratory, National Institute of Materials and Chemical Research, 1-1 Higashi, Tsukuba, Ibaraki, Japan. baba@home.nimc.og.jp
Abstract:The formability, current-voltage characteristics and stability of the planar lipid bilayer membranes from the synthetic phytanyl-chained glycolipids, 1, 3-di-O-phytanyl-2-O-(beta-glycosyl)glycerols (Glc(Phyt)(2), Mal(N)(Phyt)(2)) were studied. The single bilayer membranes were successfully formed from the glycolipid bearing a maltotriosyl group (Mal(3)(Phyt)(2)) by the folding method among the synthetic glycolipids examined. The membrane conductance of Mal(3)(Phyt)(2) bilayers in 100 mM KCl solution was significantly lower than that of natural phospholipid, soybean phospholipids (SBPL) bilayers, and comparable to that of 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) bilayers. From the permeation measurements of lipophilic ions through Mal(3)(Phyt)(2) and DPhPC bilayers, it could be presumed that the carbonyl groups in glycerol backbone of the lipid molecule are not necessarily required for the total dipole potential barrier against cations in Mal(3)(Phyt)(2) bilayer. The stability of Mal(3)(Phyt)(2) bilayers against long-term standing and external electric field change was rather high, compared with SBPL bilayers. Furthermore, a preliminary experiment over the functional incorporation of membrane proteins was demonstrated employing the channel proteins derived from octopus retina microvilli vesicles. The channel proteins were functionally incorporated into Mal(3)(Phyt)(2) bilayers in the presence of a negatively charged glycolipid. From these observations, synthetic phytanyl-chained glycolipid bilayers are promising materials for reconstitution and transport studies of membrane proteins.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号