首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Variable colour patterns indicate multidimensional,intraspecific trait variation and ecological generalization in moths
Authors:Anders Forsman  Daniela Polic  Johanna Sunde  Per-Eric Betzholtz  Markus Franzén
Institution:Center for Ecology and Evolution in Microbial Model Systems, EEMiS, Dept of Biology and Environmental Science, Linnaeus Univ., Kalmar, Sweden
Abstract:Animal colour patterns long have provided information about key processes that drive the ecological and evolutionary dynamics of biological diversity. Theory and empirical evidence indicate that variation in colour patterns and other traits among individuals generally improves the performance of populations and species, for example by reducing predation risk, increasing establishment success, improving resilience to environmental change, and decreasing risk of extinction. However, little is known about whether and how variation in colour pattern among species is associated with variation in other phenotypic dimensions. To address this issue, we analysed associations of colour pattern with morphological, behavioural and life-history traits on the basis of data for nearly 400 species of noctuid moths. We found that moths with more variable colour patterns had longer flight activity periods, more diverse habitats and a greater number of host plant species than species with less variable colour patterns. Variable coloration in adult noctuid moths therefore can be considered as indicative of broader niches and generalist diets. Colour pattern variability was not significantly associated with overwintering stage or body size (wing span), and it was independent of whether the colour pattern of the larvae was non-variable, variable or highly variable. Colour pattern variation during the larval stage tended to increase as the duration of the flight activity period increased, but was independent of the length of the larval period, diet breadth and habitat use. The realization that information on colour pattern variation in adult moths, and possibly other organisms, offers a proxy for niche breadth and dietary generalization can inform management and conservation biology.
Keywords:biodiversity  ecology  evolution  generalization  macroecology  niche
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号