首页 | 本学科首页   官方微博 | 高级检索  
     


Bimodal Opioid Regulation of Cyclic AMP Formation: Implications for Positive and Negative Coupling of Opiate Receptors to Adenylyl Cyclase
Authors:Lin Wang   Alan R. Gintzler
Affiliation:Department of Biochemistry, State University of New York, Health Science Center at Brooklyn, Brooklyn, New York, U.S.A.
Abstract:Abstract: A μ-selective opiate receptor agonist, sufentanil, can either increase or decrease the stimulated formation of cyclic AMP (cAMP) in the myenteric plexus. The direction of the opioid modulation of this second messenger depends on the concentration of opioid used. Low doses of opioid enhance, whereas higher concentrations inhibit, the magnitude of cAMP that is formed in response to electrical stimulation. Opioids exert this dual regulation on only stimulated cAMP formation. Basal levels are not affected. Opioid facilitation and inhibition of stimulated cAMP formation are blocked by naloxone, indicating mediation by opiate receptors. Because all experiments were conducted in the presence of a phosphodiesterase inhibitor, it is highly unlikely that opioid regulation of stimulated cAMP formation is due to changes in the rate of its degradation. Positive and negative coupling of μ-opiate receptors to adenylyl cyclase is the most plausible explanation for the bimodal opioid effects on cAMP content. The marked parallel between the current observations and the previously reported bimodal opioid regulation of evoked enkephalin release is consistent with the hypothesis that adenylyl cyclase is one biochemical substrate for the bimodal opiate receptor-coupled regulatory mechanism governing the stimulated release of this opioid peptide.
Keywords:Adenylyl cyclase    Cyclic AMP    Opiate receptor    Signal transduction    Opioids
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号