Purification, characterization and inhibition of human skin collagenase |
| |
Authors: | David E. Woolley Robert W. Glanville Dennis R. Roberts John M. Evanson |
| |
Affiliation: | University Department of Medicine, University Hospital of South Manchester, West Didsbury, Manchester M20 8LR, U.K. |
| |
Abstract: | 1. The neutral collagenase released into the culture medium by explants of human skin tissue was purified by ultrafiltration and column chromatography. The final enzyme preparation had a specific activity against thermally reconstituted collagen fibrils of 32mug of collagen degraded/min per mg of enzyme protein, representing a 266-fold increase over that of the culture medium. Electrophoresis in polyacrylamide disc gels showed it to migrate as a single protein band from which enzyme activity could be eluted. Chromatographic and polyacrylamide-gel-elution experiments provided no evidence for the existence of more than one active collagenase. 2. The molecular weight of the enzyme estimated from gel filtration and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis was approx. 60000. The purified collagenase, having a pH optimum of 7.5-8.5, did not hydrolyse the synthetic collagen peptide 4-phenylazobenzyloxycarbonyl-Pro-Leu-Gly-Pro-d-Arg-OH and had no non-specific proteinase activity when examined against non-collagenous proteins. 3. It attacked undenatured collagen in solution at 25 degrees C, producing the two characteristic products TC(A)((3/4)) and TC(B)((1/4)). Collagen types I, II and III were all cleaved in a similar manner by the enzyme at 25 degrees C, but under similar conditions basement-membrane collagen appeared not to be susceptible to collagenase attack. At 37 degrees C the enzyme attacked gelatin, producing initially three-quarter and one-quarter fragments of the alpha-chains, which were degraded further at a lower rate. As judged by the release of soluble hydroxyproline peptides and electron microscopy, the purified enzyme degraded insoluble collagen derived from human skin at 37 degrees C, but at a rate much lower than that for reconstituted collagen fibrils. 4. Inhibition of the skin collagenase was obtained with EDTA, 1,10-phenanthroline, cysteine, dithiothreitol and sodium aurothiomaleate. Cartilage proteoglycans did not inhibit the enzyme. The serum proteins alpha(2)-macroglobulin and beta(1)-anti-collagenase both inhibited the enzyme, but alpha(1)-anti-trypsin did not. 5. The physicochemical and enzymic properties of the skin enzyme are discussed in relation to those of other human collagenases. |
| |
Keywords: | |
|
|