首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The role of zinc in Bacillus subtilis cytidine deaminase
Authors:Mejlhede N  Neuhard J
Institution:Center for Enzyme Research, Institute of Molecular Biology, University of Copenhagen, Solvgade 83H, DK-1307 Copenhagen K, Denmark.
Abstract:Cytidine deaminase (CDA) from Bacillus subtilis is a zinc-containing enzyme responsible for the hydrolytic deamination of cytidine to uridine and 2'-deoxycytidine to 2'-deoxyuridine. Titration of the cysteinyl groups of the enzyme with p-hydroxymercuriphenyl sulfonate (PMPS) resulted in release of one zinc ion per subunit. Addition of EDTA to chelate the zinc and dithiothreitol (DTT) to remove PMPS, followed by removal of the low molecular weight compounds by gel filtration, resulted in an apoenzyme with no enzymatic activity. The apoenzyme was almost fully reactivated by addition of zinc chloride, indicating that the zinc ion played a central role in catalysis, in keeping with what has been observed with Escherichia coli CDA Betts, L., Xiang, S., Short, S. A., Wolfenden, R., and Carter, C. W. J. (1994) J. Mol. Biol. 235, 635-656]. Addition of Cd(2+) or Co(2+) caused partial reactivation of the apoenzyme. Zinc reconstitution of the apoenzyme was strictly dependent on the presence of reducing agents, suggesting that the zinc-ligating cysteines, when unligated, participated in disulfide bond formation. An enzymatically active isoform of the tetrameric CDA protein, containing an extension of 13 amino acids at the C-terminus of each subunit, was used in conjunction with the wild-type CDA in subunit-subunit dissociation studies to show that the zinc ion does not assist in the thermodynamic refolding of the protein. After treatment with PMPS and EDTA, the enzyme existed as unfolded unassociated subunits. Immediately following DTT addition to remove PMPS, the subunits refolded into a tetrameric structure, independent of the presence of zinc.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号