首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Terminal Regions Confer Plasticity to the Tetrameric Assembly of Human HspB2 and HspB3
Authors:Alice R Clark  Wilma Vree Egberts  Frances DL Kondrat  Gillian R Hilton  Nicholas J Ray  Ambrose R Cole  John A Carver  Justin LP Benesch  Nicholas H Keep  Wilbert C Boelens  Christine Slingsby
Institution:1. Department of Biological Sciences, Crystallography, Institute of Structural & Molecular Biology, Birkbeck College, Malet Street, London, WC1E 7HX, UK;2. Radboud University Nijmegen, Institute of Molecules & Materials, Department of Biomol Chem, NL-6500 Nijmegen, Netherlands;3. Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Rd, Oxford, OX1 3QZ, UK;4. Research School of Chemistry, Australian National University, Acton, ACT, 2601, Australia
Abstract:Heterogeneity in small heat shock proteins (sHsps) spans multiple spatiotemporal regimes—from fast fluctuations of part of the protein, to conformational variability of tertiary structure, plasticity of the interfaces, and polydispersity of the inter-converting, and co-assembling oligomers. This heterogeneity and dynamic nature of sHsps has significantly hindered their structural characterization. Atomic coordinates are particularly lacking for vertebrate sHsps, where most available structures are of extensively truncated homomers. sHsps play important roles in maintaining protein levels in the cell and therefore in organismal health and disease. HspB2 and HspB3 are vertebrate sHsps that are found co-assembled in neuromuscular cells, and variants thereof are associated with disease. Here, we present the structure of human HspB2/B3, which crystallized as a hetero-tetramer in a 3:1 ratio. In the HspB2/B3 tetramer, the four α-crystallin domains (ACDs) assemble into a flattened tetrahedron which is pierced by two non-intersecting approximate dyads. Assembly is mediated by flexible “nuts and bolts” involving IXI/V motifs from terminal regions filling ACD pockets. Parts of the N-terminal region bind in an unfolded conformation into the anti-parallel shared ACD dimer grooves. Tracts of the terminal regions are not resolved, most likely due to their disorder in the crystal lattice. This first structure of a full-length human sHsp heteromer reveals the heterogeneous interactions of the terminal regions and suggests a plasticity that is important for the cytoprotective functions of sHsps.
Keywords:ACD  α-crystallin domain  AP  anti-parallel  MS  mass spectrometry  sHSP  small heat shock protein  TOCSY  total correlated spectroscopy  α-crystallin domain  asymmetric heteromer  heat shock protein  molecular chaperone  polydispersity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号