首页 | 本学科首页   官方微博 | 高级检索  
   检索      


2'-5' Oligoadenylate synthetase plays a critical role in interferon-gamma inhibition of respiratory syncytial virus infection of human epithelial cells
Authors:Behera Aruna K  Kumar Mukesh  Lockey Richard F  Mohapatra Shyam S
Institution:Division of Allergy and Immunology, Joy McCann Culverhouse Airway Disease Center, University of South Florida College of Medicine and James A. Haley Veterans Affairs Hospital, Tampa 33612, USA.
Abstract:Respiratory syncytial virus (RSV), associated with bronchiolitis and asthma, is resistant to the antiviral effects of type-I interferons (IFN), but not IFN-gamma. However, the antiviral mechanism of IFN-gamma action against RSV infection is unknown. The molecular mechanism of IFN-gamma-induced antiviral activity was examined in this study using human epithelial cell lines HEp-2 and A549. Exposure of these cells to 100-1000 units/ml of IFN-gamma, either before or after RSV infection, results in a significant decrease in RSV infection. After 1 h of exposure, IFN-gamma induces protein expression of IFN regulatory factor-1 (IRF-1) but not IRF-2, double-stranded RNA-activated protein kinase, and inducible nitric-oxide synthase in these cells. The mRNA for IRF-1, p40, and p69 isoforms of 2'-5' oligoadenylate synthetase (2-5 AS) are detectable, respectively, at 1 and 4 h of IFN-gamma exposure. Studies using cycloheximide and antisense oligonucleotides to IRF-1 indicate a direct role of IRF-1 in activating 2-5 AS. Cells transfected with 2-5 AS antisense oligonucleotides inhibit the antiviral effect of IFN-gamma. A stable cell line of HEp-2 overexpressing RNase L inhibitor, RLI-14, which exhibits an IFN-gamma-induced gene expression pattern similar to that of the parent cell line, shows a significant reduction in RNase L activity and IFN-gamma-mediated antiviral effect, compared with HEp-2 cells. These results provide direct evidence of the involvement of 2-5 AS in IFN-gamma-mediated antiviral activity in these cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号