首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Phosphorylation of threonine 497 in endothelial nitric-oxide synthase coordinates the coupling of L-arginine metabolism to efficient nitric oxide production
Authors:Lin Michelle I  Fulton David  Babbitt Roger  Fleming Ingrid  Busse Rudi  Pritchard Kirkwood A  Sessa William C
Institution:Department of Pharmacology and Program in Vascular Cell Signaling and Therapeutics, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA.
Abstract:There is evidence that endothelial nitric-oxide synthase (eNOS) is regulated by reciprocal dephosphorylation of Thr497 and phosphorylation of Ser1179. To examine the interrelationship between these sites, cells were transfected with wild-type (WT), T497A, T497D, S1179D, and T497A/S1179D eNOS and activity, NO release and eNOS localization were assessed. Although eNOS T497A, S1179D and T497A/S1179D eNOS had greater enzymatic activity than did WT eNOS in lysates, basal production of NO from cells was markedly reduced in cells transfected with T497A and T497A/S1179D eNOS but augmented in cells transfected with S1179D eNOS. Stimulating cells with ATP or ionophore normalized the loss of function seen with T497A and T497A/S1179D eNOS to levels observed with WT and S1179D eNOS, respectively. Despite these functional differences, the localization of eNOS mutants were similar to WT. Because both T497A and T497A/S1179D eNOS exhibited higher enzyme activity but reduced production of NO, we examined whether these mutations were "uncoupling" NO synthesis. T497A and T497A/S1179D eNOS generated 2-3 times more superoxide anion than WT eNOS, and both basal and stimulated interactions of T497A/S1179D eNOS with hsp90 were reduced in co-immunoprecipitation experiments. Thus, the phosphorylation/dephosphorylation of Thr497 may be an intrinsic switch mechanism that determines whether eNOS generates NO versus superoxide in cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号