首页 | 本学科首页   官方微博 | 高级检索  
     


Nicotinamide Adenine Dinucleotide Phosphate Phosphatase Facilitates Dark Reduction of Nitrate: Regulation by Nitrate and Ammonia
Authors:D. Pattanayak  S.R. Chatterjee
Abstract:Leaves of 15 - 30-d-old plants of sunflower and jute were harvested at 10.00 or 23.00 (local time) and measured immediately, or those harvested at 10.00 were incubated for one hour in sunlight either in water or 5 mM methionine sulfoximine (MSX) solution and then for three hours in dark either in water or 15 mM KNO3 solution. Nitrate feeding during dark incubation, in general, increased nitrate reductase (NR) and nitrite reductase (NiR) activities, and NADH and soluble sugar contents. Increase in tissue nitrate concentration in MSX fed but not in control samples suggested reduction of nitrate in dark. NADPH-dependent NR activity increased considerably upon feeding with nitrate in dark. Concomitantly, NADPH phosphatase activity was also increased in nitrate treated, dark incubated leaves. It is proposed that nitrate regulates dark nitrate reduction by facilitating generation of NADH from NADPH by NADPH phosphatase. High amounts of ammonia accumulated in MSX treated, but not in control leaves, upon dark incubation. Relative activities of NR and NADPH phosphatase, and amounts of soluble sugar and NADH were low in MSX fed samples compared to that of control. So, high amount of ammonia might partially repress NADPH phosphatase and consequently deprive NR of reducing equivalents. This revised version was published online in July 2006 with corrections to the Cover Date.
Keywords:glucose-6-phosphate dehydrogenase  oxidative pentose phosphate pathway
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号