首页 | 本学科首页   官方微博 | 高级检索  
     


Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis
Authors:Akiyama Kentaro  Chen Chider  Wang DanDan  Xu Xingtian  Qu Cunye  Yamaza Takayoshi  Cai Tao  Chen WanJun  Sun Lingyun  Shi Songtao
Affiliation:Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA.
Abstract:Systemic infusion of bone marrow mesenchymal stem cells (BMMSCs) yields therapeutic benefit for a variety of autoimmune diseases, but the underlying mechanisms are poorly understood. Here we show that in mice systemic infusion of BMMSCs induced transient T cell apoptosis via the FAS ligand (FASL)-dependent FAS pathway and could ameliorate disease phenotypes in fibrillin-1 mutated systemic sclerosis (SS) and dextran-sulfate-sodium-induced experimental colitis. FASL(-/-) BMMSCs did not induce T cell apoptosis in recipients, and could not ameliorate SS and colitis. Mechanistic analysis revealed that FAS-regulated monocyte chemotactic protein 1 (MCP-1) secretion by BMMSCs recruited T cells for FASL-mediated apoptosis. The apoptotic T cells subsequently triggered macrophages to produce high levels of TGFβ, which in turn led to the upregulation of CD4(+)CD25(+)Foxp3(+) regulatory T cells and, ultimately, immune tolerance. These data therefore demonstrate a previously unrecognized mechanism underlying BMMSC-based immunotherapy involving coupling via FAS/FASL to induce T cell apoptosis.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号