首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular characterization of a gene encoding N-myristoyl transferase (NMT) from Triticum aestivum (bread wheat).
Authors:Tim Dumonceaux  Raju V S Rajala  Rajendra Sharma  Gopalan Selvaraj  Raju Datla
Institution:National Research Council of Canada, Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, SK S7N 0W0, Canada.
Abstract:Myristoyl-CoA:protein N-myristoyl transferase (NMT; EC 2.3.1.97) acylates the Gly residue abutting the N-terminal Met with a myristic acid following the removal of the Met residue in certain eukaryotic proteins, and in some cases myristoylation is essential to cell growth and survival. We report the cloning of a full-length cDNA encoding NMT from Triticum aestivum (TaNMT). The cDNA included a predicted open reading frame of 1317 nucleotides, which encoded a predicted protein of 438 amino acids containing all of the residues that are important for NMT activity. The TaNMT amino acid and nucleotide sequences were compared with NMTs from 14 other species encompassing a wide array of taxonomic groups. Among the experimentally validated NMTs, TaNMT was most similar to that of Arabidopsis thaliana. Southern blot analysis of wheat genomic DNA showed that TaNMT is encoded by a single copy gene, with one copy per haploid genome. We expressed TaNMT in Escherichia coli cells and determined that the recombinant protein possessed NMT activity, catalyzing the N-myristoylation of peptides from known or putatively myristoylated proteins from plants and animals without a strong preference for the plant peptides. TaNMT is the second experimentally validated plant NMT sequence and the first from a monocotyledonous species.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号