首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Spatial distribution of ectomycorrhizal mats in coniferous forests of the Pacific Northwest, USA
Authors:Robert P Griffiths  Gay A Bradshaw  Barbara Marks  George W Lienkaemper
Institution:(1) Department of Forest Science, Oregon State University, 97331 Corvallis, OR, USA;(2) Forestry Sciences Laboratory, Pacific Northwest Research Station, USDA Forest Service, 3200 Jefferson Way, 97331 Corvallis, OR, USA
Abstract:Ectomycorrhizal mats in forest soils have a wide global distribution and have been noted as potentially important elements in forest soil nutrient cycling. To elucidate the relationship between ectomycorrhizal mats and their environment, we undertook field studies and spatial analyses of mat distributions at different spatial scales.We used two experimental approaches to study mat-forming ectomycorrhizal fungi in coniferous forests of the Pacific Northwest in the United States. In the first approach, ectomycorrhizal mats and other forest floor features were mapped in 2 × 10 m plots and digitized into a geographical information system (GIS) for spatial pattern analysis. In order to examine larger-scale phenomena, a second approach involving other sites was taken; soil cores were taken along 30-m transects, and distance to the closest living potential host tree was calculated for each core.Mat patterns were studied at two scales: (1) within-stand level (i.e. variability attributed to distribution of other mat species, forest floor attributes, and understory vegetation); and (2) stand level (i.e. variability expressed along a successional gradient). Mat distribution was influenced by: (1) the proximity of one mat to another; (2) the distance from the mat to the closest living tree; (3) the density of living trees in a stand; and (4) the successional stage of the stand.Although GIS analysis indicated that mats of different morphologies did not physically overlap, there was a tendency for clustering of mats. No apparent correlations were observed between forest floor features and mats located within the 2 × 10 m grids. On the scale of tens of meters, mats decreased with distance from the closest potential host tree. Spatial patterns of mat distributions in harvested sites suggest that these mats may persist at least 2 years after their host trees have been cut. For Gautieria mats, total mat area, size, and frequency differed with stand age.This study has demonstrated the importance of both spatial scaling and forest stand age when the natural distribution of mycorrhizal fungi is examined. Results suggest the need for mat research directed at higher-order scales (e.g. stand and watershed) that will provide accurate information for managing forests to ensure their survival and normal function. ei]J H Graham
Keywords:ectomycorrhizal mats  geographic information system  geostatistical analysis  spatial patterns
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号