首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Production of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from Gluconate and Glucose by Recombinant Aeromonas hydrophila and Pseudomonas putida
Authors:Yuan-Zheng Qiu  Jing Han  Jing-Jing Guo  Guo-Qiang Chen
Institution:(1) Department of Biological Sciences and Biotechnology, Tsinghua University, 100084 Beijing, China;(2) School of Life Science, Shandong Normal University, 250014 Jinan, China
Abstract:Aeromonas hydrophila 4AK4 and Pseudomonas putida GPp104 were genetically engineered to synthesize poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) using gluconate and glucose rather than fatty acids. A truncated tesA gene, encoding cytosolic thioesterase I of Escherichia coli which catalyzes the conversion of acyl-ACP into free fatty acids, was introduced into A. hydrophila 4AK4. When grown in gluconate, the recombinant A. hydrophila 4AK4 synthesized 10% (w/w) PHBHHx containing 14% (mol/mol) 3-hydroxyhexanoate. If additional PHBHHx synthesis genes, phaPCJ, were over-expressed with the truncated tesA in A. hydrophila 4AK4, the PHBHHx content increased to 15% (w/w) and contained 19% (mol/mol) 3-hydroxyhexanoate. Recombinant P. putida GPp104 harboring phaC encoding PHBHHx synthase of A. hydrophila, phaB encoding acetoacetyl-CoA reductase of Wautersia eutropha and phaG encoding 3-hydroxyacyl-ACP-CoA transferase of P. putida, synthesized 19% (w/w) PHBHHx containing 5% (mol/mol) 3-hydroxyhexanoate from glucose. The results suggest that the engineered pathways were applicable to synthesize PHBHHx from unrelated carbon sources such as gluconate and glucose.
Keywords:Aeromonas hydrophila  gluconate  glucose  poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)  polyhydroxyalkanoates  Pseudomonas putida
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号