首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Protection against MPP+ neurotoxicity in cerebellar granule cells by antioxidants
Authors:González-Polo Rosa A  Soler Germán  Rodríguezmartín Andrea  Morán Jose M  Fuentes José M
Institution:Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain.
Abstract:The neuropathology associated with Parkinson's disease (PD) is thought to involve excessive production of free radicals, dopamine autoxidation, defects in glutathione peroxidase expression, attenuated levels of reduced glutathione, altered calcium homeostasis, excitotoxicity and genetic defects in mitochondrial complex I activity. While the neurotoxic mechanisms are vastly different for excitotoxins and 1-methyl-4-phenylpyridinium ion (MPP(+)), both are thought to involve free radical production, compromised mitochondrial activity and excessive lipid peroxidation. We show here that the levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) increased significantly after treatment of cultured cerebellar granule cells (CGCs) with 50 microM MPP(+). Co-treatment with antioxidants such as ascorbate (ASC), catalase, alpha-tocopherol (alpha-TOH), coenzyme Q(10) (CoQ(10)) or superoxide dismutase (SOD) rescued the cells from MPP(+)-induced death. MPP(+)-induced cell death was also abolished by co-treatment with nitric oxide synthase (NOS) inhibitors such as 7-nitroindazole (7-NI), 2-ethyl-2-thiopseudourea hydrobromide (EPTU) or S-methylisothiourea sulphate (MPTU). We also tested the protective effects of an iron chelator (deferoxamine mesylate, DFx) and a peroxynitrite scavenger (FeTTPS) and the results lend further support to the view that the free radical cytotoxicity plays an essential role in MPP(+)-induced death in primary cultures of CGC.
Keywords:MPP+  Cerebellar granule cells  ROS  RNS  Antioxidants  Cell death
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号