首页 | 本学科首页   官方微博 | 高级检索  
     


Association of vanadate-sensitive Mg(2+)-ATPase and shape change in intact red blood cells
Authors:Y H Xu  Z Y Lu  A D Conigrave  M E Auland  B D Roufogalis
Affiliation:Department of Biochemistry, University of Sydney, New South Wales, Australia.
Abstract:Intact human erythrocytes, initially depleted of Mg2+ by EDTA incubation in the presence of A23187, exhibit Mg(2+)-dependent phosphate production of around 1.5 mmol per liter cells.h, half-maximally activated at around 0.4 mM added free Mg2+. This appears to correspond to Mg(2+)-stimulated adenosine triphosphatase (Mg(2+)-ATPase) activity found in isolated membranes, which is known to have a similar activity and affinity for Mg2+. Vanadate (up to 100 microM) inhibited Mg(2+)-dependent phosphate production and ATP breakdown in intact cells. Over a similar concentration range vanadate (3-100 microM) transformed intact cells from normal discocytes to echinocytes within 4-8 h at 37 degrees C, and more rapidly in Mg(2+)-depleted cells. The rate of Ca(2+)-induced echinocytosis was also enhanced in Mg(2+)-depleted cells. These results support previous studies in erythrocyte ghosts suggesting that vanadate-induced shape change is associated with inhibition of Mg(2+)-ATPase activity localized in the plasma membrane of the red blood cell.
Keywords:erythrocytes  magnesium  echinocyte  calcium  plasma membrane
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号