首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dynamical mechanisms of pacemaker generation in IK1-downregulated human ventricular myocytes: insights from bifurcation analyses of a mathematical model
Authors:Kurata Yasutaka  Hisatome Ichiro  Matsuda Hiroyuki  Shibamoto Toshishige
Institution:Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan. yasu@kanazawa-med.ac.jp
Abstract:Dynamical mechanisms of the biological pacemaker (BP) generation in human ventricular myocytes were investigated by bifurcation analyses of a mathematical model. Equilibrium points (EPs), periodic orbits, stability of EPs, and bifurcation points were determined as functions of bifurcation parameters, such as the maximum conductance of inward-rectifier K+ current (I(K1)), for constructing bifurcation diagrams. Stable limit cycles (BP activity) abruptly appeared around an unstable EP via a saddle-node bifurcation when I(K1) was suppressed by 84.6%. After the bifurcation at which a stable EP disappears, the I(K1)-reduced system has an unstable EP only, which is essentially important for stable pacemaking. To elucidate how individual sarcolemmal currents contribute to EP instability and BP generation, we further explored the bifurcation structures of the system during changes in L-type Ca2+ channel current (I(Ca,L)), delayed-rectifier K+ currents (I(K)), or Na(+)/Ca2+ exchanger current (I(NaCa)). Our results suggest that 1), I(Ca,L) is, but I(K) or I(NaCa) is not, responsible for EP instability as a requisite to stable BP generation; 2), I(K) is indispensable for robust pacemaking with large amplitude, high upstroke velocity, and stable frequency; and 3), I(NaCa) is the dominant pacemaker current but is not necessarily required for the generation of spontaneous oscillations.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号