Order in phospholipid Langmuir-Blodgett monolayers determined by total internal reflection fluorescence |
| |
Authors: | X. Zhai J.M. Kleijn |
| |
Affiliation: | Department of Physical and Colloid Chemistry, Wageningen Agricultural University, The Netherlands. |
| |
Abstract: | Orientational order parameters of two diphenylhexatriene (DPH)-based fluorescent probes, 2-(3-(diphenylhexatrienyl)propanoyl)-1-hexadecanoyl-sn-glycero-3-p hosphocholine (DPHpPC) and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH), in dipalmitoylphosphatidylcholine (DPPC) Langmuir-Blodgett monolayers on quartz have been determined by total internal reflection fluorescence (TIRF). From these order parameters orientation distributions were reconstructed by the maximum-entropy method. For monolayers transferred from the liquid-condensed phase, preferential tilt angles with respect to the substrate normal around 14 degrees in the tail region and 5 degrees near the glycerol-acyl chain linkage were found, as reflected by the DPHpPC and TMA-DPH probes, respectively. The degree of ordering near the headgroup region seems to be larger than that further away from the surface. A substantial fraction of the TMA-DPH probes have a flat orientation and are probably located between the phospholipid headgroups and the substrate surface. Monolayers transferred from the liquid-expanded phase show a more random ordering, and most of the probe molecules (DPHpPC) are more or less flat on the surface. The results are consistent with earlier atomic force microscopy measurements on identical monolayers and are in reasonable agreement with previously published data on other organized phospholipid systems. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|