首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Acute effects of combining citalopram and pindolol on regional brain serotonin synthesis in sham operated and olfactory bulbectomized rats
Authors:Khanh Q Nguyen  Yoshihiro Tohyama  Arata Watanabe  Shu Hasegawa  Ivan Skelin  Mirko Diksic
Institution:1. Department of Biology, D''Youville College, 320 Porter Ave., Buffalo, NY, United States;2. Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, 3435 Main St, Buffalo, NY, United States;3. Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
Abstract:The olfactory bulbectomized (OBX) rat is considered to be a good model of the pathology of human depression and also of the functional actions of antidepressant drug therapy. It has been proposed that antidepressant effects of selective serotonin reuptake inhibitors (SSRIs) can be accelerated by blocking 5-HT1A/B autoreceptors with pindolol. The underlying mechanism is thought to involve acute unrestricting of 5-HT release and, consequently, relatively enhanced 5-HT turnover throughout the forebrain serotonergic networks. The effect of this combination on 5-HT turnover in sham operated or OBX rats can be assessed at the level of 5-HT synthesis, a very important presynaptic step in serotonergic neurotransmission, using the α-14C]methyl-l-tryptophan autoradiography method. In sham rats, acute citalopram (20 mg/kg) treatment increased synthesis at almost all serotonergic terminal regions but slightly decreased synthesis at serotonergic cell body regions (i.e. dorsal and median (not significant) raphe; ~16%). Combining pindolol (10 mg/kg) with citalopram further increased synthesis at many regions in sham rats (relative to treatment with only citalopram). In OBX rats, citalopram decreased synthesis at a few terminal regions and greatly decreased synthesis at the dorsal and median raphe (~45%; relative to OBX rats treated with saline). Combining pindolol with citalopram greatly increased synthesis at almost all regions in OBX rats (relative to treatment with only citalopram). These results suggest that acute citalopram effects result in elevated terminal 5-HT synthesis, but these effects are restrained by 5-HT1A/B autoreceptor feedback to different degrees in sham and OBX rats. Moreover, 5-HT1A/B autoreceptor feedback is stronger in OBX rats and may underlie the delay of SSRI effects in OBX rats and, correspondingly, in human depression. Pindolol acceleration and augmentation of SSRI antidepressant therapy for human depression may be mediated by attenuation of 5-HT1A/B autoreceptor feedback, permitting unhindered SSRI effects on serotonergic terminals.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号