Abstract: | We have studied the idiotype and fine specificity of the secondary immune response to phosphocholine (PC) in C57BL (B10, B10.D2, and B.C8) and BALB (BALB/c, BAB-14, and C.B20) congenic strains of mice. In vivo IgM responses of mice from these two genetic backgrounds differed in their T15 idiotypic representation. BALB strains expressed the T15 idiotype on greater than 90% of their IgM, PC-specific plaque-forming cells (PFC), whereas C57BL strains expressed the T15 idiotype on approximately 50% of their IgM PFC. All strains examined expressed greater than 75% PC-inhibitable, VHPC idiotype-positive, IgM PFC. The IgG3 and IgA memory responses were similar to the IgM memory response; BALB strains produced a higher proportion of T15+ PFC than C57BL strains; however, the majority of IgG3 and IgA PFC in all strains were VHPC+, and PC-inhibitable. In contrast, the IgG1 memory response was not dominated by T15+, VHPC+, PC-inhibitable PFC in any of the strains tested. The IgG1 PFC required nitrophenylphosphocholine (NPPC) for efficient inhibition. The IgG2 memory response generally mimicked the IgG1 response with respect to idiotype and specificity. These data demonstrate that the representation of the T15 idiotype in the anti-PC immune response is determined by genes outside both the MHC and Igh genetic loci. Control of T15 expression in secondary IgM, IgG3, and IgA anti-PC responses was examined by using a cell-mixing protocol with primed T and B cells from BALB/c and B10.D2 mice. T15 representation in these responses was determined by the genotype of the B cell, not by the genotype of the helper T cell. Similarly, the B cell genotype was responsible for the idiotypic profile of a primary, in vitro, T-dependent, anti-PC response. |