首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Transient photovoltages in purple membrane multilayers. Charge displacement in bacteriorhodopsin and its photointermediates
Authors:S B Hwang  J I Korenbrot  W Stoeckenius
Abstract:The photovoltaic properties of bacteriorhodopsin molecules and their photochemical intermediates have been investigated in an experimental cell consisting of multilayered films of highly oriented, dry fragments of purple membrane and lipid sandwiched between two metal (Pd) electrodes. The electrical time constant of these sandwich cells containing between 5 and 30 layers is less than 10(-5) S. Bright illumination of these cells with actinic flashes of approximately 1 ms duration generates transient photovoltages. These photovoltages, which make the extracellular surface of purple membrane positive with respect to the intracellular surface, follow the time course of the flash with no detectable latency. The amplitude of the photovoltages increases linearly with light intensity and their action spectrum matches the absorption spectrum of the light-adapted state of bacteriorhodopsin, BR570. In these dry multilayer cells, the slow photointermediates of bacteriorhodopsin, M412, N520 and O640 are long lived. Illumination of the sandwich cells with long duration (200 ms) pulses of light results, therefore, in the formation of photomixtures containing all these slow photointermediates. Flash illumination of the sandwich cells immediately following the conditioning pulse produces photovoltages whose action spectra match the absorption spectra of the M412 and N520 photointermediates. The M412 photovoltages, like the BR570 photovoltages, follow the time course of the actinic flash with no detectable latency and increase in amplitude linearly with light intensity. But, unlike the BR570 photovoltage, the M412, N520 and O640 photovoltages make the extracellular surface of purple membrane negative with respect to the intracellular surface. Through the of their specific photovoltaic signals, M412 and N520 are shown to be kinetically distinct photointermediates of bacteriorhodopsin. Detection of fast photovoltages with these characteristics in the absence of any ionic solution, and in parallel with spectrophotometric changes, suggest that they arise from charge displacements in the bacteriorhodopsin molecules and their photointermediates as they undergo photochemical conversion in response to the absorption of photons.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号