首页 | 本学科首页   官方微博 | 高级检索  
   检索      


FAS activation induces dephosphorylation of SR proteins; dependence on the de novo generation of ceramide and activation of protein phosphatase 1
Authors:Chalfant C E  Ogretmen B  Galadari S  Kroesen B J  Pettus B J  Hannun Y A
Institution:Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
Abstract:The search for potential targets for ceramide action led to the identification of ceramide-activated protein phosphatases (CAPP). To date, two serine/threonine protein phosphatases, protein phosphatase 2A (PP2A) and protein phosphatase 1 (PP1), have been demonstrated to function as ceramide-activated protein phosphatases. In this study, we show that treatment with either anti-FAS IgM (CH-11) (150 ng/ml) or exogenous d-(e)-C(6-)ceramide (20 microm) induces the dephosphorylation of the PP1 substrates, serine/arginine-rich (SR) proteins, in Jurkat acute leukemia T-cells. The serine/threonine protein phosphatase inhibitor, calyculin A, but not the PP2A-specific inhibitor, okadaic acid, inhibited both FAS- and ceramide-induced dephosphorylation of SR proteins. Anti-FAS IgM treatment of Jurkat cells led to a significant increase in levels of endogenous ceramide beginning at 2 h with a maximal increase of 10-fold after 7 h. A 2-h pretreatment of Jurkat cells with fumonisin B(1) (100 microm), a specific inhibitor of CoA-dependent ceramide synthase, blocked 80% of the ceramide generated and completely inhibited the dephosphorylation of SR proteins in response to anti-FAS IgM. Moreover, pretreatment of Jurkat cells with myriocin, a specific inhibitor of serine-palmitoyl transferase (the first step in de novo synthesis of ceramide), also blocked FAS-induced SR protein dephosphorylation, thus demonstrating a role for de novo ceramide. These results were further supported using A549 lung adenocarcinoma cells treated with d-(e)-C(6-)ceramide. Dephosphorylation of SR proteins was inhibited by fumonisin B(1) and by overexpression of glucosylceramide synthase; again implicating endogenous ceramide generated de novo in regulating the dephosphorylation of SR proteins in response to FAS activation. These results establish a specific intracellular pathway involving both de novo ceramide generation and activation of PP1 to mediate the effects of FAS activation on SR proteins.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号