首页 | 本学科首页   官方微博 | 高级检索  
     


Elevated atmospheric CO(2) concentration and diurnal cycle induce changes in lipid composition in Arabidopsis thaliana
Authors:Ekman Asa  Bülow Leif  Stymne Sten
Affiliation:Department of Crop Science, Swedish University of Agricultural Sciences, PO Box 44, SE-23053 Alnarp, Sweden. Asa.Ekman@vv.slu.se
Abstract:Few studies regarding the effects of elevated atmospheric CO(2) concentrations on plant lipid metabolism have been carried out. Here, the effects of elevated CO(2) concentration on lipid composition in mature seeds and in leaves during the diurnal cycle of Arabidopsis thaliana were investigated. Plants were grown in controlled climate chambers at elevated (800 ppm) and ambient CO(2) concentrations. Lipids were extracted and characterized using thin layer chromatography (TLC) and gas liquid chromatography. The fatty acid profile of total leaf lipids showed large diurnal variations. However, the elevated CO(2) concentration did not induce any significant differences in the diurnal pattern compared with the ambient concentration. The major chloroplast lipids monogalactosyldiacylglycerol (MGDG) and phosphatidylglycerol (PG) were decreased at elevated CO(2) in favour of phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Elevated CO(2) produced a 25% lower ratio of 16:1trans to 16:0 in PG compared with the ambient concentration. With good nutrient supply, growth at elevated CO(2) did not significantly affect single seed weight, total seed mass, oil yield per seed, or the fatty acid profile of the seeds. This study has shown that elevated CO(2) induced changes in leaf lipid composition in A. thaliana, whereas seed lipids were unaffected.
Keywords:Arabidopsis thaliana    diurnal variation    elevated CO2    fatty acid    lipid    oil    starch    trans-Δ3-hexadecenoic acid
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号