The influence of water level on the growth and photosynthesis of Hydrocotyle ranunculoides L.fil. |
| |
Authors: | Andreas Hussner Christine Meyer |
| |
Affiliation: | Abteilung Geobotanik, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany |
| |
Abstract: | Floating Pennywort (Hydrocotyle ranunculoides L.fil.), a native to North America and naturalized in Central and South America, is an invasive aquatic weed in western Europe and several other regions worldwide. H. ranunculoides settles primarily in stagnant to slow-flowing waters (e.g. ditches, canals, rivers, lakes and ponds). The species prefers sunny and nutrient-rich sites and forms dense interwoven mats, which can quickly cover the surface of infested waters. In this study, the effect of three different water levels on growth of Floating Pennywort was investigated. Plants were cultivated on high-nutrient soils under waterlogged, semi-drained and drained conditions. Highest relative growth rates (RGR) of 0.097±0.004 g g−1 dw d−1 were reached under waterlogged conditions. This was significantly higher than RGR of plants cultivated semi-drained and drained. Floating Pennywort showed some phenological adaptations to drained soil conditions, including significant differences in the relative amounts of leaf, petiole and shoot biomass, whilst the relative amount of root biomass was not significantly influenced by the water level. Furthermore, Floating Pennywort reached under drained conditions lower relative water contents (RWC) of leaves, petioles and shoots, a significant shorter length of internodes, a significant lower extent of shoot porosity (POR), a lower chlorophyll content and an increased Chla:Chlb ratio. In addition, maximum gas exchange of drained cultivated plants is significantly lower, due to strongly decreased leaf conductance under reduced water availability. Overall, H. ranunculoides showed ability to grow under different water levels, but performed best under waterlogged conditions. |
| |
Keywords: | Neophyte Wetland plant Waterlogging Relative growth rate Net photosynthesis Floating Pennywort |
本文献已被 ScienceDirect 等数据库收录! |
|