首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A proposed role for inorganic carbon in water oxidation
Authors:Paul A Castelfranco
Institution:1. Department of Plant Biology, University of California, Davis, CA, 95616, USA
Abstract:This is an article on the peroxydicarbonic acid (PODCA) hypothesis of photosynthetic water oxidation, which follows our first article in this general area (Castelfranco et al., Photosynth Res 94:235–246, 2007). In this article I have expanded on the idea of a protein-bound intermediate containing inorganic carbon in some chemically bound form. PODCA is conceived in this article as constituting a bridge between two proteins of the oxygen-evolving complex (OEC) that are essential for the evolution of O2. Presumably, these are two proteins which have been shown to possess Mn-dependent carbonic anhydrase activity (Lu et al., Plant Cell Physiol 46:1944–1953, 2005; Shitov et al., Biochemistry (Moscow) 74:509–517, 2009). One of these proteins may be the DI of the OEC core and the other may be the PsbO extrinsic protein. I attempt to relate briefly the PODCA hypothesis to the role of two cofactors for O2 evolution: Ca2+ and inorganic carbon. In this scheme, inorganic carbon (HCO3 ?) mediates the oxidation of peroxide to dioxygen, thus avoiding the homolytic cleavage of the peroxide into two free radicals. I visualize the role of Ca2+ in the binding of PODCA to two essential photosystem II proteins. I propose that PODCA alternates between two Phases. In Phase 1, PODCA is broken down with the production of O2. In Phase 2, PODCA is regenerated.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号