首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mode of action of family 10 and 11 endoxylanases on water-unextractable arabinoxylan
Authors:Vardakou Maria  Katapodis Petros  Samiotaki Martina  Kekos Dimitris  Panayotou George  Christakopoulos Paul
Institution:Biotechnology Laboratory, Chemical Engineering Department, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, 15700 Athens, Greece.
Abstract:Microbial endo-beta-1,4-xylanases (EXs, EC 3.2.1.8) belonging to glycanase families 10 and 11 differ in their action on water-unextractable arabinoxylan (WU-AX). WU-AX was incubated with different levels of a Thermoascus aurantiacus family 10 and a Sporotrichum thermophile family 11 endoxylanases. At 10 g l(-1) arabinoxylan, enzyme concentrations (KE values) needed to obtain half-maximal hydrolysis rates (V(max) values) were 4.4 nM for the xylanase from T. aurantiacus and 7.1 nM for the xylanase from S. thermophile. Determination of Vmax/KE revealed that the family 10 enzyme hydrolysed two times more efficiently WU-AX than the family 11 enzyme. Molecular weights of the products formed were assessed and separation of feruloyl-oligosaccharides was achieved by anion-exchange and size-exclusion chromatography (SEC). The main difference between the feruloylated products by xylanases of family 10 and 11 concerned the length of the products containing feruloyl-arabinosyl substitution. The xylanase from T. aurantiacus liberated from WU-AX a feruloyl arabinoxylodisaccharide (FAX2) as the shortest feruloylated fragment in contrast with the enzyme from S. thermophile, which liberated a feruloyl arabinoxylotrisaccharide (FAX3). These results indicated that different factors govern WU-AX breakdown by the two endoxylanases.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号