The effect of FF-MAS on porcine cumulus-oocyte complex maturation, fertilization and pronucleus formation in vitro |
| |
Authors: | Faerge Inger Strejcek Frantisek Laurincik Jozef Rath Detlef Niemann Heiner Schellander Karl Rosenkranz Christine Hyttel Poul Maddox Grøndahl Christian |
| |
Affiliation: | Fertility Team, Novo Nordisk A/S, Copenhagen, Denmark. if@kvl.dk |
| |
Abstract: | Follicular fluid meiosis-activating sterol (FF-MAS) has been isolated from the follicular fluid (FF) of several species including man. FF-MAS increases the quality of in vitro oocyte maturation, and thus the developmental potential of oocytes exposed to FF-MAS during in vitro maturation is improved. The aim of the present study was to investigate the effects of FF-MAS on porcine oocyte maturation and pronucleus formation in vitro. Porcine cumulus-oocyte complexes (COCs) were isolated from abattoir ovaries and in vitro matured for 48 h in NCSU 37 medium supplemented with 1 mg/l cysteine, 10 ng/ml epidermal growth factor and 50 microM 2-mercaptoethanol with or without 10% porcine follicular fluid (pFF). For the first 22 h, 1 mM db-cAMP and 10 I.E PMSG/hCG was added. The medium was supplemented with 1 microM, 3 microM, 10 microM, 30 microM or 100 microM FF-MAS dissolved in ethanol. After maturation the COCs were denuded mechanically using a fine glass pipette under constant pH and in vitro fertilized with fresh semen (5 x 10(5) spermatozoa/ml). The presumptive zygotes were evaluated 18 h after fertilization. The addition of pFF increased the monospermic as well as the polyspermic penetration of oocytes. In the absence of pFF, the addition of FF-MAS decreased the polyspermic penetration rate, whereas FF-MAS in combination with pFF decreased monospermic and increased polyspermic penetration. The degeneration rate of ova decreased in the presence of FF-MAS irrespective of the presence or absence of pFF. In the absence of pFF, FF-MAS at 3-10 microM increased the number of zygotes with advanced maternal pronuclear stages. In supraphysiological doses, i.e. 30-100 microM, FF-MAS dose-dependently and reversibly inhibited nuclear maturation in the absence of pFF. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|