首页 | 本学科首页   官方微博 | 高级检索  
     


Dimerization of cGMP-dependent protein kinase Ibeta is mediated by an extensive amino-terminal leucine zipper motif,and dimerization modulates enzyme function
Authors:Richie-Jannetta Robyn  Francis Sharron H  Corbin Jackie D
Affiliation:Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA.
Abstract:All mammalian cGMP-dependent protein kinases (PKGs) are dimeric. Dimerization of PKGs involves sequences located near the amino termini, which contain a conserved, extended leucine zipper motif. In PKG Ibeta this includes eight Leu/Ile heptad repeats, and in the present study, deletion and site-directed mutagenesis have been used to systematically delete these repeats or substitute individual Leu/Ile. The enzymatic properties and quaternary structures of these purified PKG mutants have been determined. All had specific enzyme activities comparable to wild type PKG. Simultaneous substitution of alanine at four or more of the Leu/Ile heptad repeats ((L3A/L10A/L17A/I24A), (L31A/I38A/L45A/I52A), (L17A/I24A/L31A/I38A/L45A/I52A), and (L3A/L10A/L45A/I52A)) of the motif produces a monomeric PKG Ibeta. Mutation of two Leu/Ile heptad repeats can produce either a dimeric (L3A/L10A) or monomeric (L17A/I24A and L31A/I38A) PKG. Point mutation of Leu-17 or Ile-24 (L17A or I24A) does not disrupt dimerization. These results suggest that all eight Leu/Ile heptad repeats are involved in dimerization of PKG Ibeta. Six of the eight repeats are sufficient to mediate dimerization, but substitutions at some positions (Leu-17, Ile-24, Leu-31, and Ile-38) appear to have greater impact than others on dimerization. The Ka of cGMP for activation of monomeric mutants (PKG Ibeta (delta1-52) and PKG Ibeta L17A/I24A/L31A/I38A/L45A/I52A) is 2- to 3-fold greater than that for wild type dimeric PKG Ibeta, and there is a corresponding 2- to 3-fold increase in cGMP-dissociation rate of the high affinity cGMP-binding site (site A) of these monomers. These results indicate that dimerization increases sensitivity for cGMP activation of the enzyme.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号