Abstract: | In vitro and at physiological ionic strength, unphosphorylated smooth muscle myosin filaments dissolve on addition of ATP, forming folded (10S) myosin monomers. By following the fate of ATP and the time course of filament disassembly we have established details of the mechanism of this process. Myosin filaments first bind and hydrolyse 2.0 mol/mol of ATP before significant filament dissolution occurs. Following dissolution, the hydrolysis products ADP.Pi are retained on the heads of the folded myosin monomers, and are released so slowly (half time approximately 100 min at 100 mM KCl) as to be effectively trapped. The straight (6S) conformation of myosin, stable at greater than 225 mM KCl, did not exhibit this product trapping, and neither did myosin filaments held under conditions which disfavour ATP-induced disassembly. The implications of these results for filament stability in vivo are discussed in terms of a simple, testable model for smooth muscle myosin self-assembly. |