首页 | 本学科首页   官方微博 | 高级检索  
     


Pollen dispersal and gene flow within and into a population of the alpine monocarpic plant Campanula thyrsoides
Authors:J. F. Scheepens  Eva S. Frei  Georg F. J. Armbruster  Jürg St?cklin
Affiliation:Section of Plant Ecology, Institute of Botany, University of Basel, Schönbeinstrasse 6, CH-4056 Basel, Switzerland
Abstract:

Background and Aims

Gene flow by seed and pollen largely shapes the genetic structure within and among plant populations. Seed dispersal is often strongly spatially restricted, making gene flow primarily dependent on pollen dispersal within and into populations. To understand distance-dependent pollination success, pollen dispersal and gene flow were studied within and into a population of the alpine monocarpic perennial Campanula thyrsoides.

Methods

A paternity analysis was performed on sampled seed families using microsatellites, genotyping 22 flowering adults and 331 germinated offspring to estimate gene flow, and pollen analogues were used to estimate pollen dispersal. The focal population was situated among 23 genetically differentiated populations on a subalpine mountain plateau (<10 km2) in central Switzerland.

Key Results

Paternity analysis assigned 110 offspring (33·2 %) to a specific pollen donor (i.e. ‘father’) in the focal population. Mean pollination distance was 17·4 m for these offspring, and the pollen dispersal curve based on positive LOD scores of all 331 offspring was strongly decreasing with distance. The paternal contribution from 20–35 offspring (6·0–10·5 %) originated outside the population, probably from nearby populations on the plateau. Multiple potential fathers were assigned to each of 186 offspring (56·2 %). The pollination distance to ‘mother’ plants was negatively affected by the mothers'' degree of spatial isolation in the population. Variability in male mating success was not related to the degree of isolation of father plants.

Conclusions

Pollen dispersal patterns within the C. thyrsoides population are affected by spatial positioning of flowering individuals and pollen dispersal may therefore contribute to the course of evolution of populations of this species. Pollen dispersal into the population was high but apparently not strong enough to prevent the previously described substantial among-population differentiation on the plateau, which may be due to the monocarpic perenniality of this species.
Keywords:Gene flow   pollen dispersal   Campanula thyrsoides   European Alps   male mating success   monocarpic perenniality   paternity analysis   pollen analogues   pollination distance
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号