首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Fiber-optic Implantation for Chronic Optogenetic Stimulation of Brain Tissue
Authors:Kevin Ung  Benjamin R Arenkiel
Institution:Department of Molecular & Human Genetics, Baylor College of Medicine (BCM);Department of Neuroscience, Baylor College of Medicine (BCM);Jan and Dan Duncan Neurological Research Institute, Texas Children''s Hospital
Abstract:Elucidating patterns of neuronal connectivity has been a challenge for both clinical and basic neuroscience. Electrophysiology has been the gold standard for analyzing patterns of synaptic connectivity, but paired electrophysiological recordings can be both cumbersome and experimentally limiting. The development of optogenetics has introduced an elegant method to stimulate neurons and circuits, both in vitro1 and in vivo2,3. By exploiting cell-type specific promoter activity to drive opsin expression in discrete neuronal populations, one can precisely stimulate genetically defined neuronal subtypes in distinct circuits4-6. Well described methods to stimulate neurons, including electrical stimulation and/or pharmacological manipulations, are often cell-type indiscriminate, invasive, and can damage surrounding tissues. These limitations could alter normal synaptic function and/or circuit behavior. In addition, due to the nature of the manipulation, the current methods are often acute and terminal. Optogenetics affords the ability to stimulate neurons in a relatively innocuous manner, and in genetically targeted neurons. The majority of studies involving in vivo optogenetics currently use a optical fiber guided through an implanted cannula6,7; however, limitations of this method include damaged brain tissue with repeated insertion of an optical fiber, and potential breakage of the fiber inside the cannula. Given the burgeoning field of optogenetics, a more reliable method of chronic stimulation is necessary to facilitate long-term studies with minimal collateral tissue damage. Here we provide our modified protocol as a video article to complement the method effectively and elegantly described in Sparta et al.8 for the fabrication of a fiber optic implant and its permanent fixation onto the cranium of anesthetized mice, as well as the assembly of the fiber optic coupler connecting the implant to a light source. The implant, connected with optical fibers to a solid-state laser, allows for an efficient method to chronically photostimulate functional neuronal circuitry with less tissue damage9 using small, detachable, tethers. Permanent fixation of the fiber optic implants provides consistent, long-term in vivo optogenetic studies of neuronal circuits in awake, behaving mice10 with minimal tissue damage.
Keywords:Neuroscience  Issue 68  optogenetics  fiber optics  implantation  neuronal circuitry  chronic stimulation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号