首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ultrastructure and Vacuolar Movements in the Free-Living Diplomonad Trepomonas agilis Klebs*
Authors:BRIAN P EYDEN  KEITH VICKERMAN
Abstract:SYNOPSIS. The structure of Trepomonas agilis communis Klebs is described from light and electron microscope observations on 2 clone isolates of the organism. The surface membrane shows marked differentiation into an extremely thick (16 nm) symmetric membrane which covers the greater part of the body, and a thinner (~ 10–12 nm) asymmetric membrane which lines the 2 lateral oral grooves and the posterior channel connecting them; a similar asymmetric membrane covers the flagella. Thorium dioxide staining suggests a denser distribution of acidic carbohydrate groups on the asymmetric membrane. The pathways of cytoplasmic streaming observed in the living flagellate coincide with those of microtubule bands arising close to the flagellar basal bodies and it is suggested that the bands play an orienting role in the streaming of food vacuoles. The contractile vacuole undergoes diastole in the anterior (postnuclear) cytoplasm, and is formed by coalescence of smaller vesicles. At systole the entire vacuole migrates to the posterior extremity to discharge into the posterior channel; the route of exit lacks guiding structural elements. Features of the flagellate's physiology and organization are discussed in relation to the observed lack of mitochondria, microbodies and Golgi apparatus in diplomonads.
Keywords:Trepomonas agilis  Diplomonadida  plasma membrane differentiation  cytoplasmic streaming  microtubules  contractile vacuole  light microscopy  electron microscopy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号