首页 | 本学科首页   官方微博 | 高级检索  
     


The conserved oligomeric Golgi complex acts in organ morphogenesis via glycosylation of an ADAM protease in C. elegans
Authors:Kubota Yukihiko  Sano Mitsue  Goda Saori  Suzuki Norio  Nishiwaki Kiyoji
Affiliation:RIKEN Center for Developmental Biology, Chuo-ku, Kobe 650-0047, Japan.
Abstract:In C. elegans, the gonad acquires two U-shaped arms through directed migration of gonadal distal tip cells (DTCs). A member of the ADAM (a disintegrin and metalloprotease) family, MIG-17, is secreted from muscle cells and localizes to the gonadal basement membrane where it functions in DTC migration. Mutations in cogc-3 and cogc-1 cause misdirected DTC migration similar to that seen in mig-17 mutants. Here, we report that COGC-3 and COGC-1 proteins are homologous to mammalian COG-3/Sec34 and COG-1/ldlBp, respectively, two of the eight components of the conserved oligomeric Golgi (COG) complex required for Golgi function. Knockdown of any of the other six components by RNA interference also produces DTC migration defects, suggesting that the eight components function in a common pathway. COGC-3 and COGC-1 are required for the glycosylation and gonadal localization of MIG-17, but not for secretion of MIG-17 from muscle cells. Furthermore, COGC-3 requires MIG-17 activity for its action in DTC migration. Our findings demonstrate that COG complex-dependent glycosylation of an ADAM protease plays a crucial role in determining organ shape.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号